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In this paper we investigate the stability of a bilayer exposed to air flow. The bilayer
consists of a viscoelastic solid layer (mucus), which rests on a viscous fluid film
(serous fluid). The motivation behind this work is to examine the coupled, fluid/elastic
instabilities related to mucus clearance in the lung where breathing and cough apply
shear forces from the air flow onto the bilayer. Previous research on mucus transport
due to air flow has not addressed the effects of the underlying serous layer nor those
of surface tension at the mucus–air interface, two new features incorporated into the
model. Surface tension effects are governed by the new parameter κ′ = (σ/dG′) where
σ is the air–mucus surface tension, G′ is the elastic shear modulus of the mucus, and
d is a characteristic thickness of the bilayer. The model predictions for the onset of
unstable waves as a function of the parameters are compared to previous theories
and experiments to provide physical interpretations and to compare results. The
comparison with experiments show good qualitative and quantitative agreement. The
results are compared, also, to flow over a single, viscoelastic layer, with no viscous
fluid underneath, to demonstrate the appearance of new wave behaviour when the
viscous fluid is added.

1. Introduction
Mucus clearance is an important process for normal pulmonary function providing,

among other things, a cleansing mechanism for removing inhaled particles and micro-
organisms. Clearance may occur by gravity drainage, ciliary motion, air flow shear
forces and bi-phasic flow, all important aspects of pulmonary fluid dynamics as
reviewed in Grotberg (1994). The latter two mechanisms are fluid/solid interactions
which are similar in many ways to the stability studies of flows over compliant,
viscoelastic coatings. There has been a great deal of work done in the past to examine
the stability of compliant coatings when subjected to fluid flowing over them. The
interest in studying such systems has typically been motivated by the desire to
delay boundary layer transition, which has important ramifications in the design of
surfaces for enhanced drag reduction; airplane wings and yacht hulls are just two
examples of problems which would utilize this technology. The reader is referred
to Riley, Gad-el-Hak & Metcalfe (1988) for a comprehensive review article on this
topic.

† Current address: Baxter Healthcare Inc., Route 120 & Wilson Rds., Round Lake, IL 60073,
USA.
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Mucus is a viscoelastic material. The components of mucus which provide its
viscoelastic properties are glycoproteins, often referred to as mucins. These mucins
are extended rods, normally 500–900 nm long and 10 nm wide, which are cross-linked
into a three-dimensional network by disulphide bonds (Wu & Carlson 1991). They are
released from mucous goblet and gland cells as droplets 1–2 µm in diameter, which
then rapidly swell by a factor of several hundred through absorption of water from
the underlying serous fluid layer. They spread out under the action of cilia on the
serous layer surface to form sheets, which are then, under normal conditions, carried
along above the serous layer by the action of the cilia (Sleigh, Blake & Liron 1988).
The mucus layer exists from the trachea outward to approximately airway generation
15 or so. Because mucus is composed of a watery serous solution bound within a
matrix of cross-linked mucins, the serous molecules on the air/mucus surface give
rise to an interfacial tension there. Schurch et al. (1990) have measured this interfacial
tension to be 32 dyn cm−1.

In addition to viscoelasticity, mucus exhibits non-Newtonian behaviour including
a finite yield stress (∼ 500–600 dyn cm−2), shear-thinning and thixotropy. It has a
frequency-dependent shear modulus which increases to a plateau as frequency in-
creases, the asymptote ranging over an interval G′ ∼ 30–300 dyn cm−2, depending
on the measurement techniques and condition of the mucus, see Dulfano, Adler &
Philippoff (1971), Davis (1973), Powell et al. (1974) and King & Macklem (1977).
The mucus layer is typically thin (5–10 microns in healthy humans); however, in
the case of disease this thickness could be many more times greater than normal.
Lung pathology may also change the material properties of the mucus. Cystic fi-
brosis, for example, causes mucus to become much more viscous and elastic, owing
in part to interlinking of DNA strands from cellular and bacterial debris. This
additional structure to the mucus complex inhibits mucus clearance, a major clin-
ical problem in cystic fibrosis. Treatments aimed at breaking down the DNA, and
reducing the viscosity and elasticity, show promise (Shah et al. 1996). The mucus
lining covers a thin viscous sublayer, the serous layer, which is a watery-type solu-
tion covering the ciliated bronchial epithelium. The serous layer is typically 5–10 µm
in healthy humans but may vary with the state of hydration within the lung as
well during disease. Most authorities view the serous fluid as Newtonian. The total
bilayer thickness to airway radius ratio, θ ∼ O(10−3–10−2) for healthy lungs and
θ ∼ O(10−1–1) for certain diseases such as chronic bronchitis and cystic fibrosis.
In severe asthma, for example, mucus plugging of small airways may occur where
θ → 1.

Airways tend to be aerodynamically short, i.e. the entrance lengths for developing
flow are longer than the tube lengths. Also, the largest airways experience turbulent
air flow as has been modelled by Basser, McMahon & Griffith (1989), Clarke, Jones
& Oliver (1970), and King, Chang & Weber (1982). The air flow over the mucus
may cause unstable waves on its surface, if the flow rate is sufficiently large. These
instabilities grow, and may eventually shear off into minute droplets forming a bi-
phasic flow which removes mucus very efficiently. Air speeds are particularly high
during cough, ∼ 200 m s−1 according to Ross, Gramiak & Rahn (1955), which are of
similar magnitude to the elastic wave speed of the trachea, for example, 80–120 m s−1

(Suki et al. 1995). Consequently, in the lung, instabilities of the mucus layer may be
desirable since they can increase the effectiveness of cough (King et al. 1982).

Recently, Evrensel et al. (1993) adapted the analysis of flow over compliant coatings
to look specifically at the problem of mucus clearance in the lung. Their system is
one of steady air flow passing through a cylindrical tube coated with a viscoelastic
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layer. The coating is anchored at its interface with the underlying tube wall, there
being no serous sublayer as may occur in severe dehydration. The base state is
taken to be fully developed, Poiseuille flow in the tube. Assuming small-amplitude
perturbations to the base state, Evrensel et al. (1993) conduct a linear stability
analysis which leads to solution of the relevant Orr–Sommerfeld equation coupled
to the solid stress field at the air/mucus interface. Their analysis pertains to a single
layer whose thickness/radius ratio falls in the range 0.1 < θ < 0.6. They find that
the critical flow speed which precipitates instabilities decreases with increasing mucus
thickness. This is consistent with the findings of Clarke et al. (1970), whose coated
tube experiments were for 0.06 < θ < 0.24 and whose critical air flows were turbulent,
3000 < Re < 10 000.

There have also been many experimental studies conducted to study the effectiveness
of cough. King et al. (1982) carried out experimental work on both steady and
oscillatory air flow over mucus simulants (locust bean gum or hog gastric mucin)
coating the inner surface of a tube. In the steady air flow experiments, it was
found that varying the thickness of the mucus layer in the range 0.01 < θ < 0.05
caused no systematic effect on the critical air velocity required for unstable wave
production. A later paper, King, Brock & Lundell (1985), examined the relationship
of the simulated mucus layer thickness and rheology with its clearance by simulated
cough, created by sudden opening of a pressurized air tank into the test section.
Peak Reynolds numbers for this transient pulse (duration ∼ 0.5 s) of air flow fall
in the range ∼ 15 000 < Re < 35 000. By injecting tracer particles on to the surface
of the compliant layer, they examined particle clearance, and observed that particle
movement was caused by the crests of waves pushing the particles along. Hence they
surmised that particle clearance and wave formation are related phenomena. Their
results indicate that clearance rate is influenced by mucus viscoelasticity and mucus
layer thickness; thicker layers resulted in greater clearance. A similar apparatus was
used by Scherer & Burtz (1978) for flow over purely viscous fluid layers.

Basser et al. (1989) conducted experiments on flow over a mucus simulant (may-
onnaise) in a rectangular channel. They hypothesize that an ‘avalanche’ phenomenon
is responsible for mucus clearance in the lung. The instability of the air/mayonnaise
interface is seeded when a region of mayonnaise on the floor of the channel reaches
its yield stress and starts to flow locally. This local movement leads to a piling and
thickening of the mayonnaise resulting in crest formation at the mayonnaise/air
interface. Air flowing over the crest has increased velocity, and this entails larger
stresses which can lead to yielding in a region local to the surface of the crest. The
region of yielding grows until some portion of the mayonnaise makes contact with
the top of the channel, thereby blocking air flow, and precipitating a catastrophic
clearance event. Their turbulent critical air flows had a Reynolds number range,
2000 < Re < 16 000.

Duncan, Waxman & Tulin (1985), in their work on flow over compliant surfaces,
considered a system of inviscid fluid flow (modified by pressure amplitude and phase
shifts to simulate boundary layer phenomena) over a two-dimensional viscoelastic
Kelvin–Voigt solid, resting on a rigid flat boundary. Their parameter choices were
confined to a fluid/solid density ratio of unity, appropriate for liquid flows over
compliant coatings, unlike the airway system where this ratio is O(10−3). Assuming
small sinusoidal disturbances they conducted a linear stability analysis for the system
to determine how the onset flow speed and growth rate of instabilities depend on
different system parameters. They then explained their results in terms of the energy
classification arguments derived by Landahl (1962) and Benjamin (1963).
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Figure 1. Schematic of the air/mucus layer/serous layer system.

In the present work, we consider a system in which air flows over a viscoelastic
solid lying on top of a viscous sublayer. In addition, our model considers the effect of
surface tension at the air/mucus interface. Neither of these features have been studied
by previous investigators. By assuming small sinusoidal disturbances we conduct a
linear stability analysis of the system. Since the mucus and serous layers are thin with
respect to the airway tube radius, i.e. θ � 1, we assume channel flow for a planar
geometry. In the limit that the thickness of the viscous sublayer tends to zero, and
there is no surface tension acting at the air/mucus interface, we recover the dispersion
relationship derived by Duncan et al. (1985), which is a less complicated function
of the complex wave speed c and the disturbance wavenumber k. We also use the
wave classification arguments of Landahl (1962) and Benjamin (1963) to elucidate
the fundamental nature of the air/solid/fluid interaction and its instabilities.

2. Mathematical model
2.1. Assumptions and scaling

A mucus slab, of thickness a, lies on a serous layer of thickness b. These are both
small compared to the radius of the airway tube, and hence we assume the velocity
and displacement fields in the serous and mucus layers are both locally planar. There
is an air flow of magnitude U∞ over the mucus which simulates the air flow generated
during breathing. The mucus/air and serous/mucus interfaces are given by a + εη2

and εη1 respectively, where η1 and η2 represent deviations from flat surfaces. Surface
tension σ acts at the air/mucus interface, and gravity g acts downwards towards the
airway wall. The airway tube is assumed to be much less compliant than the mucus,
and hence we treat it as rigid. The basic model is illustrated in figure 1.

Since the stress levels imparted to the mucus are below the mucus yield stress, we
model the mucus as a viscoelastic solid with storage modulus (elastic shear modulus)
G′, dynamic loss modulus (viscous modulus) G′′ and density ρm. This assumption is
justified later, when we calculate the stress in the mucus at the onset of instability,
and verify that it is indeed below that of the yield stress. The serous layer is treated
as a Newtonian fluid with constant viscosity, µs, and density, ρs.

The displacements in the mucus are denoted Um = (Um, Vm) and the serous velocities
are denoted us = (us, vs). We scale x, y, Um, Vm ∼ b, and us, vs, U∞ ∼ Ct, the transverse
wave speed in an ideal elastic solid; Ct = (G′/ρm)1/2 = 5.62 cm s−1 for mucus Powell
et al. (1974); and the pressure p ∼ µs Ct/b. The dimensionless mucus thickness and

air flow speed are then â = a/b and Û = U∞/Ct, respectively, where the hat signifies
a dimensionless quantity. Time, t, is scaled on b/Ct. The variables which appear in
the following equations are the dimensionless forms.
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With this scaling, the dimensionless stress tensor for the viscoelastic solid σmij is
given by

σmij =

(
1

Gλ
− 2(1 + iδ)

)
δijUmkk + (1− iδ)

[
∂Umi

∂xj
+
∂Umj

∂xi

]
, (1)

where Gλ = C2
t /C

2
1 , δij is the Kronecker delta and δ is a measure of the viscous

damping in the mucus, δ = G′/G′′. Note that δ = 0 is the purely elastic limit for
the mucus layer and that the complex form of the viscous damping in (1) anticipates
travelling wave solutions which, eventually, will be expressed in complex form. In the
present work, we shall assume a Kelvin–Voigt model for the viscoelastic material, so
that δ is linearly proportional to the frequency of the motion. We assume there is
no damping in the longitudinal direction, and thus the longitudinal wave speed CL
is the same as that in the elastic solid Cl = (E/ρm)1/2 where E is Young’s modulus.
Similarly, the dimensionless stress tensor for the viscous fluid σsij is given by

σsij = γ

[
−pδij +

∂ui

∂xj
+
∂uj

∂xi

]
, (2)

where γ = µs/ρmbCt is the ratio of the serous layer to the mucus shear stress.

2.2. Governing equations

The governing equation for the displacement field in the mucus layer, with gravity
acting in the negative y-direction is then,

∂2Um

∂t2
= (1 + iδ)∇2Um +

(
1

Gγ
− (1− iδ)

)
∇(∇ ·Um)− Gj , (3)

where G = gb/C2
t . We assume that the serous layer behaves as a Newtonian fluid,

and that the Reynolds number of the flow in the serous layer is much less than unity
so that Stokes flow applies. Thus, the governing equation for the velocity field in the
serous layer is

∇2us − GRs

γ
j = ∇ps, ∇ · us = 0, (4)

where us = (us, vs) is the velocity in the serous layer, ps is the pressure and Rs = ρs/ρm.
For the air flow, we assume a simplified model which incorporates both the viscous

and inviscid effects of the flow. We decouple these effects, such that the viscous
component of the air flow is turbulent boundary layer flow over the mucus in its
unperturbed state and the inviscid component is due to the presence of the wavy
boundary. This is a reasonable approximation considering µa/µs � 1, where µa is the
viscosity of the air, and hence the viscous effects of the perturbed air flow will be
small compared to the viscous effects of the perturbed serous layer flow field.

The inviscid component is determined using potential flow theory for flow over a
small-amplitude wavy boundary. Thus if the wavy boundary has wavenumber, k, and
complex wave speed, c, then ua = Ûi + ε∇Φ, where

Φ = −i[Û − c]e−k(y−â)η2. (5)

In this case, ε is the amplitude of the perturbation relative to the serous layer thickness.
For this potential flow field, the pressure due to the wavy boundary is then

pa1 = −e−k(y−â)
R

γ
[Û − c]2kη2, (6)

where R = ρa/ρm is the ratio of air to mucus densities.
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Dimensionless

Quantities Magnitude parameters Magnitude

Mucus depth, a ∼ 50 µm â 1

Serous layer depth, b ∼ 50 µm

Air density, ρa 10−3 g cm−3 R = ρa/ρm 0.001

Serous layer density, ρs 1 g cm−3 Rs = ρs/ρm 1

Mucus density, ρm 1 g cm−3

Transverse elastic wave 5.62 cm s−1 Gλ = C2
t /C

2
l 0.0909

speed, Ct

Longitudinal elastic 18.61 cm s−1

wave speed, Cl

Complex loss modulus, G′′ δ = G′′/G′

Flow speed, U∞ Û = U∞/Ct
Serous viscosity, µs 0.017 P γ = µs/ρmCtb 0.605

Gravity, g 981 cm s−2 G = gb/C2
t 0.158

Surface tension, σ 10 dyn cm−1 κ = σ/bG′ 62.3

Table 1. Parameters used for the air–mucus–serous system.

2.3. Boundary conditions

At the mucus/air interface we impose continuity of normal and tangential stresses.
The normal stress condition requires that [σijninj] = κni,i, where σij is the stress
tensor of either the air or viscoelastic media, ni is the unit normal of the surface
(−εη2x, 1)/(1 + (εη2x)

2)1/2, [ ] refers to a ‘jump’ and κ = σ/bG′ is the dimensionless
surface tension at the air/mucus interface. Similarly, continuity of tangential stress
requires that [σijnjti] = 0. Since we assume the air flow has a base-state viscous
component, and an inviscid first-order component, the viscous components in the
stress balances at the mucus/air interfaces only come into leading order. We also
impose the kinematic condition at this interface, but not continuity of tangential
velocity. At the serous/mucus interface, continuity of normal and tangential stress
is imposed, as well as the kinematic condition in both the mucus and the serous
layers. The no-slip condition, [uiti] = 0, is also imposed at this interface. Finally,
at the boundary y = −1, we impose conditions of no slip and no penetration.
These conditions are written out explicitly for the first-order problem, § 3.2. The
dimensionless parameters, therefore, arising in the problem are: γ, R, Rs, δ, Gλ, κ, G, â
and Û. Values of these parameters of the air–mucus–serous system are given in
table 1.

3. Problem solution
We seek solutions by expanding in terms of the small-amplitude parameter ε, so

that u = us0 + εus1, Um = Um0 + εUm1, ps = ps0 + εps1.

3.1. Leading-order problem

In the leading-order problem the air flow imparts a shear stress to the mucus,
thus dragging it at constant velocity τ/γ, where τ is given by Schlichting (1979),
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τ = (0.0288)R Û2 R
−1/5
e , and Re is the Reynolds number of the air flow. Typically

Re ∼ O(2000–4000) in the largest airways like the trachea and major bronchi, so that
the turbulent boundary layer assumption is valid over most of the range of air flow
velocities studied. That range yields τ ∼ O(0.01).

We choose to work in a coordinate system moving with the translating mucus
block. Thus, with reference to these axes, the mucus is moving with zero velocity in
the base state, but the boundary y = −1 is now moving with velocity −τ/γ. Since
we assume that the mucus behaves as a Kelvin–Voigt solid, so that the viscoelastic
damping is proportional to the frequency of the deformations, then the damping term
δ does not come in at leading order.

The leading-order solution is then

us0 = τy/γ, vs0 = 0, Um0 = τy, Vm0 =
GλGy(y − â)

2
,

pa0 = −Gâ
2γ
, ps0 =

G

γ

(
â

2
− Rsy

)
.

 (7)

In order that linear viscoelasticity be applied, we must assume small deformations in
the solid, and thus τ, Gλ, G � 1. Based on physiological parameters, these terms are
small compared to unity, and hence linear elasticity is justified.

3.2. First-order problem

The first-order problem for the mucus displacement field (Um1, Vm1) is given by

Gλ
∂2Um1

∂t2
=
∂2Um1

∂x2
+ Gλ(1− iδ)

∂2Um1

∂y2
+ [1− Gλ(1− iδ)]

∂2Vm1

∂x ∂y
. (8)

and

Gλ
∂2Vm1

∂t2
=
∂2Vm1

∂y2
+ Gλ(1− iδ)

∂2Vm1

∂x2
+ [1− Gλ(1− iδ)]

∂2Um1

∂x ∂y
. (9)

The serous layer velocities satisfy

∇4ψ = 0 where us1 = ∇× ψk, (10)

where ψ is the stream function and k is the unit normal in the z-direction. These
equations are solved subject to the boundary conditions listed below.

At the air/mucus interface, continuity of normal and tangential stress, as well as
the kinematic condition, demand that

GλGη2
+
∂Vm1

∂y
+ (1− 2Gλ(1− iδ))

∂Um1

∂x
+ γGλpa1 = κGλη2xx

∂Um1

∂y
+
∂Vm1

∂x
= 0

Vml = η2.


at y = â. (11)

At the serous/mucus interface we impose, respectively, continuity of normal and
tangential stress, the kinematic condition in both the mucus and serous layers, and
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continuity of tangential velocity, so that

GλG[1− Rs]η2 +
∂Vm1

∂y
+ (1− 2Gλ(1− iδ))

∂Um1

∂x
= −γGλps1 + 2γGλ

∂vs1

∂y

∂Um1

∂y
+
∂Vm1

∂x
=

γ

(1− iδ)

[
∂us1

∂y
+
∂vs1

∂x

]
Vm1 = η1

vs1 =
∂η1

∂t

us1 +
τ

γ
η1 =

∂Um1

∂t



at y = 0.

(12)

Finally, at the airway wall, the no-slip and no-penetration conditions require

us1 = vs1 = 0 at y = −1. (13)

Note that gravity, G, is included in the normal stress boundary conditions, since
the stress from the leading-order state is comparable to that in the first order, even
though the strains are small.

Assuming a travelling wave solution so that Um ∼ f(y)eik(x−ct), the general solution
for the mucus layer perturbation displacement equations, (8), (9), is then

Um1 =

[
A1i

sinh (αky)

α
+ B1ik cosh (αky) + A2 cosh (βky) + B2βk sinh (βky)

]
eik(x−ct),

Vm1 =

[
A1 cosh (αky) + B1αk sinh (αky)− A2isinh(βky)

β
− B2ik cosh (βky)

]
eik(x−ct),


(14)

where

α2 = 1− Gλc2, β2 = 1− c2

(1− iδ)
.

In the same way, we assume that the velocity field in the serous layer takes the same
form, and hence the solutions to (10) are

us1 = [A3ke
ky − B3ke

−ky + A4e
ky(1 + ky) + B4e

−ky(1− ky)]eik(x−ct),

vs1 = −ik[A3e
ky + B3e

−ky + A4yeky + B4ye−ky]eik(x−ct).

}
(15)

The disturbance pressure in the serous layer ps1 is then

ps1 = −2ik[A4e
ky + B4e

−ky]eik(x−ct). (16)

Using these forms (14)–(16) and inserting them into the boundary conditions, (11)–
(13), leads to ten independent equations for the ten unknown constants. This requires
solving the system, Ax = 0 where x is the vector of unknowns, (A1, B1, A2, B2, A3, B3, A4,
B4, N1, N2) with N1 and N2 being the amplitudes of the perturbed profiles η1 and η2,
respectively. If the system is to have non-trivial solutions, then the determinant of A
must be zero. This will yield a dispersion relation between the complex wave speed
c and the disturbance wavenumber, k. In the limit as b → 0, i.e. γ → ∞, the case
where there is no fluid and only a viscoelastic solid, with air flow on the top surface,



Flow-induced instabilities of a mucus–serous bilayer 9

the dispersion relation recovers that derived in Duncan et al. (1985). Since there
are infinitely many solution branches, we use asymptotics to determine analytical
expressions for c in the long wave limit. We integrate along those branches that are
of interest (Im(c) greater than or close to zero) using AUTO (Doedel 1986).

4. Solution branches and wave classification
In the present section we explore the nature of the instabilities of this gas/solid/

liquid system in order to gain a deeper understanding of how the presence of the
serous layer can affect the stability characteristics of the system. This will be helpful
in understanding the results of the following section. In exploring the effect of the
serous layer, we need to examine how the stability of the system varies with the
serous layer thickness b. Thus, in this section, all lengths are non-dimensionalized
with the mucus thickness a, so the dimensionless mucus thickness is unity, and the

dimensionless serous layer depth is b̂ = b/a. Then the dimensionless parameters will
have b replaced by a.

The instabilities are determined by solving the dispersion relationship (developed in
the previous section) for the complex wave speed c as a function of the wavenumber
k. In solving for the group velocity, ∂(Re(c)k)/∂k, as well as for the phase velocity,
Re(c), of the instabilities, we determined that the instabilities were characterized by
non-zero group velocity, and hence were convective instabilities, rather than absolute
instabilities.

4.1. Wave classes

Following the lines of the analysis conducted by Duncan et al. (1985) we shall classify
the waves in the categories outlined by Landahl and Benjamin, as either class A, B or
C waves, depending on the sign of the ‘activation energy’, ∆E, of the coating. The acti-
vation energy is defined as the change in energy of the coating (potential and kinetic)
minus the work done by the coating on the flow due to conservative forces only. The
system energy is normalized with N2

2 . ∆E is calculated in the same manner as that
adopted by Duncan et al. (1985), except that we now take into account the conservative
work done by the coating on the underlying serous layer, Ws. This work is given by

Ws =
kγ

2 Im(c)
Re[(A4 + B4)N̄1c̄]. (17)

When ∆E is negative, the work done on the flow is greater than the energy generated
in the coating, indicating that there is a net transfer of energy to the flow. These
waves are called class A waves, and exhibit the somewhat surprising behaviour that
they grow when damping is added to the system. For this reason, class A waves are
called damping instabilities. Conversely, when ∆E is positive, there is a net transfer
of energy from the flow to the coating, and these waves, called class B waves, decay
when damping is added to the system. In class C waves, the work done on the coating
is transferred into energy in the coating. Kelvin–Helmholtz instabilities are typical
of waves which exhibit class C type behaviour. We shall use these classifications in
examining the behaviour of the system due to the presence of the serous layer.

4.2. Effect of adding the serous layer

Dispersion relationships for the case of an ideal elastic solid for three different values

of serous thickness b̂ are shown in figures 2–4, for Û = 60. In studying the different
wave classes, we assume that the air viscosity is zero, so that the serous layer is not
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Figure 2. (a) Wave speed, Re(c) vs. k; (b) growth rate, Im(c) vs. k; (c) activation energy, ∆E vs. k for

b̂ = 0 (no serous layer). Remaining parameter values are κ = 0, δ = 0, G = 0, γ = 1, Gλ = 0.0909,
R = 0.001.

moving in the base state, thus ensuring the effect of the serous layer is to always take
energy away from the system. We also set gravity, G = 0, and surface tension, κ = 0,
so that the focus is solely on the effect of the serous layer. The other parameters have
values R = 0.001, Rs = 1, δ = 0, γ = 1, Gλ = 0.0909. Figure 2 shows the wave speed,

growth rate and activation energy for the case when b̂ is zero, and hence represents
the branch of instability described by Duncan et al. (1985), but with R = 0.001 instead
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Figure 3. (a) Wave speed, Re(c) vs. k; (b) growth rate, Im(c) vs. k; (c) activation energy, ∆E vs. k

for b̂ = 0.01 and Rs = 1, remaining parameter values as in figure 2.

of their R = 1. In this case, the system is neutrally stable for sufficiently long waves,
with waves travelling both upstream and downstream. At some finite value of k the
upstream wave begins to travel downstream, and at this point it changes from being
a class B wave to a class A wave; the point at which the branch changes wave class
is when ∆E becomes negative. At a subsequent wavenumber k, the two waves begin
travelling at the same speed, and the system becomes unstable. At this juncture the
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Figure 4. (a) Wave speed, Re(c) vs. k; (b) growth rate, Im(c) vs. k; (c) activation energy, ∆E vs. k

for b̂ = 0.1 and remaining parameter values as in figure 3.

two waves possess class C (Kelvin–Helmholtz) characteristics. In the present analysis,
the downstream wave is denoted branch 1, and the upstream wave is denoted branch
2. The trivial solution c = 0 is also a solution to this system.

As b̂ becomes finite, but small, the trivial solution near k = 0 splits into two distinct
but finite solution branches, branches 3 and 4. The branch 3 solution is shown in

figures 3(a) and 3(b) for b̂ = 0.01. Note that for shorter waves, away from k = 0, the
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branch 3 solution actually recovers the upstream (branch 2) solution when b̂ = 0. In

fact, the upstream solution branch (when b̂ = 0) of Duncan et al. (1985) is actually
the branch 3 solution when k is large, and the branch 2 solution for k small. The
branch 4 solution is not shown, since it does not become important for the range of
parameters studied. The corresponding curve for ∆E is shown in figure 3(c).

For larger values of b̂, branch 3 becomes more distinct, and this is apparent in

figures 4(a) and 4(b) for b̂ = 0.1. The curve of ∆E vs. k in figure 4(c) shows that the
class A behaviour of the branch 3 solution extends over a larger range of k.

These wave classification arguments also carry over to systems with a non-zero
base state, as well as systems with gravity and surface tension. Since the velocity of
the serous layer in the base state is small, the effect on the energy is also small, so
that the non-zero base state does not change the wave classification arguments at
all. The effect of gravity and surface tension is to increase the energy of the solid by
a factor of G + κk2. This accompanying increase in ∆E entails a diminished region
of wavenumbers over which class A waves (∆E < 0) exist; gravity increases the
activation energy in a region near k = 0, and surface tension increases the energy
for large k. Thus, the region of k over which waves grow due to the presence of the
viscous sublayer is reduced accordingly.

The long wave instabilities, indicated by Im(c) > 0 in figures 3(b) and 4(b), are
characterized by very small or zero phase speeds. When there is no base-state flow,
the phase speed at onset of instability is zero, and the phase speed is only changed
by a small amount when there is some finite base-state velocity. This is characteristic
of a damping instability.

The asymptotic representation of these four branches in the long wave limit is

branches 1 and 2: c = ± 1√
RGλk

+ Û ∓
√
RGλk

6R2Gλ
,

branch 3: c =
iÛ2Rb̂2k2

12γ
,

branch 4: c = −4ib̂k

γ
(1− Gλ).


(18)

Thus, branches 1 and 2 are independent of serous layer properties (to O(k)) so that
the long-wave behaviour of these two branches is not affected by the presence of
the serous layer. These two solutions are the downstream and upstream branches
respectively.

Branches 3 and 4 both recover the trivial solution in the limit as b̂ → 0. The
trivial solution is also a solution to the dispersion relationship derived by Duncan
et al. (1985). Notice that branch 3 is unstable for all flow speeds, in the long-wave
limit, k → 0. In dimensional form, c = iρaU

2∞k2b3/12µs, which is independent of all
mucus properties, and is thus solely due to the presence of the serous layer. In fact,
this instability arises in systems of inviscid air flow over thin viscous layers, with
no mucus present (Jeffreys 1924). This instability arises because the air pressure is
180◦ out of phase with the air/mucus interface. It is important to note here that
these asymptotic representations assume that gravity G is zero. If this were not the
case, the branch 3 solution, in the small-k limit, would have c ∼ −ik, for G > 0 and
the instability due to the Bernoulli forcing term would become apparent at larger
wavenumbers.
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Û =30

Û =15

Figure 5. Growth rate, Im(c) vs. wavenumber k, for Û = 15, 30, 45, remaining parameter values are
κ = 0, δ = 0, G = 0.158, γ = 0.605, Gλ = 0.0909, R = 0.001, Rs = 1, â = 1. The dashed line is the

branch 3 growth rate for b̂ = 0 and Û = 45.

Below some critical value of Û, given by

Û0 =

[
2(1− Gλ)

R

]1/2

(19)

branch 3 becomes stabilized for shorter wavelengths. Thus, below Û0, the branch 3
instability becomes apparent only at long wavelengths, and is solely due to the serous
layer. Such an instability arises in a system where there is no elastic solid present.
Thus, the presence of the elastic solid stabilizes the system for shorter waves, in
much the same way that surface tension stabilizes short waves in fluid-only systems.
This critical velocity is the same critical velocity derived by Duncan et al. (1985)
to determine the onset of class A waves. For the values of R and Gλ studied here,
Û0 = 42.64.

When Û exceeds Û0, branch 3 represents both the fluid instability at long waves
(present when there is no solid) and the solid instability for shorter waves (present
when there is no fluid). This effect is demonstrated in figure 5. The solid line is the

branch 3 growth rate when b̂ = â = 1. The dashed line is the branch 3 growth rate in

the mucus-only limit (b̂ = 0) and Û = 45 (> Û0). As can be seen, when Û > Û0, and

k is sufficiently large, the branch 3 solution recovers the b̂ = 0 limit.

5. Results
Figures 5–11 are shown for parameter values pertinent to human airways, a list of

which is given in table 1. To build our understanding of the full system, we start with
the simplest case, of elastic solids (δ = 0) with no surface tension (κ = 0), and results
for this case are shown in figures 5–7.

Figure 5 shows the dispersion relationship relating the disturbance growth rate.
Im(c) to the disturbance wavenumber k for various flow speeds, in the elastic limit
case (δ = 0). The dashed line is the growth rate for the system with no serous layer,
and Û = 45. The solid line is the growth rate for the system with mucus and serous
layer thicknesses being equal (â = 1). The system is always stable for a small range
of k near k = 0, where it is stabilized by gravity, although this cannot be depicted in
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Figure 7. Neutral stability curves Û vs. k for â = 1, 2, 10, remaining parameter values as in figure 5
except Gλ = 0.3636.

the figure. When Û is 15, the system is stable for all k. When Û = 30, it is unstable
for a finite range of k; the instability being due to the Bernoulli forcing of the air
flow which is transferred directly to the serous layer. The system is stabilized at larger
values of k by the presence of the mucus layer, which provides an elastic restoring
force to the system, in much the same way surface tension is stabilizing for fluids at
shorter wavelengths. When Û = 45, which exceeds the flutter speed (the flow speed
required to produce instabilities when there is no serous layer present) the system is
unstable for all k, except in the small range of k near zero. The asymptotic result of
the previous section for the flutter speed (Û0 = 42.64) is confirmed here.

Important parameters which change during the course of disease are the mucus
shear modulus, G′, and the mucus thickness, a. The effects of these two parameters,
in the absence of surface tension, are shown in the neutral stability curves of figure 6
and figure 7, where G′ of figure 7 is 4 times that in figure 6. Both figures show the
air flow velocity at neutral stability, Û(Im(c) = 0), plotted vs. the wavenumber, k,
for different values of mucus thickness, â. These curves define the boundary between
stability (below the curve) and instability (above). We see that increasing â raises
the neutral stability curves to higher speeds. We might expect this since a thicker
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Figure 8. Neutral stability curves for κ = 0, 62.3, remaining parameter values as in figure 5.

elastic slab has a larger bending stiffness which tends to stabilize the system and
also shift the local minima to smaller values of k, longer waves. The destabilizing
effect of the serous layer reduces to zero in the limit â � 1. It is evident from both
figures that the critical flow speed, Ûc, to precipitate the instability (the minimum of
the neutral stability curve) is significantly less than that which would be obtained in
the mucus-only system. This observation agrees qualitatively with the experimental
studies of air flowing over a mucus simulant (mayonnaise) lying on top of a thin, oily
sublayer (Basser et al. 1989).

Figure 8 shows the neutral stability curve for two different values of the surface
tension parameter, κ with â = 1. Notice that surface tension raises the air velocity
required to initiate instability. The critical air velocity, Ûc, is shown in figure 9(a) as
a function of mucus thickness, â. Two choices are shown for the dimensional surface
tension values: σ = 0 dyn cm−1 (κ = 0) and σ = 10 dyn cm−1 (κ = 62.3). Surface
tension provides a stabilizing force to the system, especially for shorter waves. In
fact, when σ = 10 dyn cm−1, the flutter instability due to the coupling of the air flow
and the solid material, which occurs at shorter wavelengths, is stabilized; the only
instability is a damping instability arising from the presence of the serous layer. It is
this damping instability which defines onset, and since surface tension also provides
a stabilizing mechanism to the fluid, it can significantly delay onset. This effect is
illustrated in figure 9(a), which shows increased Ûc for finite surface tension. For the
case when there is finite surface tension at the mucus/air interface, the dependence of
onset flow speed on mucus thickness that we saw in figures 6 and 7 is, in fact, reversed.
The neutral stability curves for dimensionless surface tension, κ = 0 and κ = 62.3
are shown in figure 8. As can be seen, finite surface tension significantly increases the
critical air velocity for large k. This is because surface tension is stabilizing when k is
large.

A similar reversal is seen in figure 9(b) where Ûc is plotted as a function of mucus
stiffness for two different values of κ. When κ = 0, the onset flow speed increases as
the mucus stiffness increases, consistent with the comparison of figure 6 to figure 7.
Increasing the mucus stiffness is thus stabilizing in this system. However, when the
surface tension is non-zero, as depicted in the curve for κ = 62.3, the onset flow
speed decreases as the stiffness increases. The basis of these two interesting reversals
is discussed below.
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Figure 10 shows the effect of mucus damping on growth rates. The material
damping only affects the system at larger wavenumbers where the flutter instability
is the dominant mode of instability. The effect of material damping is to cause
the short-wave flutter instabilities to decay. Hence, for sufficient damping the class
C waves actually exhibit class B behaviour in this parameter range. The effect of
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Figure 11. Dimensionless shear stress at onset, τ0 = γ ∂u/∂y at y = y0 vs. â for κ = 62.3. The
remaining parameter values are as in figure 5.

material damping at shorter wavelengths is to enhance growth, which is as expected,
since the waves are class A waves in this regime. Material damping has a very small
effect, O(k3), on the long-wavelength instabilities, i.e. in the limit k → 0, so that
the flow speeds at onset are not significantly affected by the viscous nature of the
material. This is because it is the serous layer which determines onset velocities, and
thus mucus damping has little effect on the system at onset. The shear stresses at the
mucus/serous interface (y = 0) and at the wall (y = −1) are shown in figure 11 and
indicate that they are well below the mucus yield stress (τ = 20), thus validating our
assumption that the mucus can be modelled as a viscoelastic solid during travelling
wave disturbances.

6. Discussion
The results indicate that air flow velocities required to precipitate instabilities for a

mucus–serous bilayer are approximately 5.0 m s−1 (∼ 100Ct), when the surface tension
of the air–mucus interface is σ = 10 dyn cm−1. Higher values of σ may be found in
the lung airway (Schurch et al. 1990), as mentioned earlier, and the resulting stiffer
system would increase the critical air speed. The air flow velocities required to initiate
waves on the air–mayonnaise surface (σ = 9 dyn cm−1) in the experiments of Basser et
al. (1989) fell in the range 10–30 m s−1(∼ (100–300)Ct), so our theoretical predictions
are close to their critical velocity data. In terms of disturbance wavelengths at the
onset of instability, only one or two undulations on the surface of the mayonnaise
were observed in Basser et al. (1989), so it is difficult to match theory and experiment.
Also, the growth is very rapid and large-deformation nonlinear analysis would be
required. However, long wavelengths at onset, approximately five times the mucus
thickness, would agree with the results of our theory.

The serous sublayer significantly modifies the mechanical system, according to our
theory. In contrast to theories of air flow over a single, elastic layer (Duncan et
al. 1985 and Evrensel et al. 1993), the base condition of our bilayer system is a
viscoelastic slab in uniform motion, dragged over a thin viscous film and parallel
to the rigid plane underneath. Because of its much larger viscosity, the perturba-
tion stresses in this liquid film are large compared to the air flow perturbations
at criticality. So the film becomes an important contributor to the resulting me-
chanics. The experiments in Basser et al. (1989) included ones where the choice of
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channel bottom material had an effect on the critical flow speed. When polyethy-
lene was used, the critical speeds were approximately half the value of those where
a cheesecloth bottom was used. Viscometric studies, using a cone–plate appara-
tus, showed that an oily, sublayer film developed between the mayonnaise and
polyethylene. Unlike our model, this film was non-Newtonian, since the viscometric
studies indicate a system yield stress between 75 to 150 dyn cm−2 with no yield
of the mayonnaise layer. Once this yield stress of the film is exceeded in an air
flow experiment, and there is viscous flow in the sublayer, the polyethylene system
is Basser et al. (1989) is similar to our theory and, presumably, the physiologi-
cal setting where the serous sublayer (Newtonian) is present. Our theory predicts
faster growth rates for the wave instability in the presence of this thin, viscous-
behaving film. This may contribute to the observed decrease in stability with a
polyethylene undersurface, attributed to the decreased yield stress in the avalanche
theory.

Basser et al. (1989) found that increasing θ from 0.4 to 0.9 lead to an increase
in critical air velocity when the cheesecloth was used at the mayonnaise/channel
interface. Since the oily sublayer was not deposited for a cheesecloth bottom, the
solid boundary conditions are similar to the theory of Evrensel et al. (1993) who
predicted that critical speeds decrease with thicker mucus layers, an opposite result.
The reason for the prediction by Evrensel et al. (1993), that a decrease in critical air
velocity occurs with increasing mucus thickness, is that they assume a constant flow
rate of air through the channel. Smaller cross-sectional areas therefore entail larger
flow velocities leading to larger shear stresses and smaller critical flow velocities. Our
theory predicts that thicker mucus layers, larger â, raise the critical air velocity for
σ = 0 and lower it for σ = 10 dyn cm−2. The effect of surface tension, apparently, is
to reverse the parametric dependence of critical velocity on mucus thickness. Surface
tension effects were discussed in the theory of Basser et al. (1989) who concluded
that it is not important in their experiments, using an analogy to wind–water waves.
The difficulty with this approach is that the wind–water wave model used assumes an
inviscid, deep fluid, not a non-Newtonian material with a yield stress and a shallow
depth.

Our theory predicts surface tension to be a significant factor in the physiological
system. We are uniquely positioned to comment here, since our model takes the novel
step of including surface tension on the air boundary of a viscoelastic slab. The ratio
κ′ = (σ/dG′) is the important dimensionless parameter which measures the relative
significance of surface tension forces and elastic shear forces. This parameter may
be viewed as the ratio of a length scale, L = σ/G′, which measures the distance
over which surface tension at the air/mucus interface is felt through the mucus, to
a physical thickness, d, which may be taken as characteristic for the bi-layer. When
d = b, the sublayer thickness, this ratio is our parameter κ. We saw a reversal of the
influence of a (figure 9a) and relative stiffness (figure 9b) depending on the surface
tension, which is large for the pulmonary application (κ ∼ 180). For a system with
no sublayer, one could choose d = a, the slab thickness. Inserting the mayonnaise
parameter values, where the slab thicknesses b are on the order 0.2 cm, κ′ ∼ 0.5. So
surface tension effects are not dominant in Basser et al. (1989); however, according
to our analysis this would be on the basis of the mayonnaise slab thicknesses being
large compared to the physiological values of mucus thickness, a ∼ 0.001 to 0.01 cm.
Our approach is consistent with the thesis of an avalanche cascade, however, because
the avalanche is precipitated by the onset of a surface wave, the mechanisms of which
we examine in a bilayer, air–solid–liquid interaction.
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7. Conclusions
We have developed a mathematical model to simulate and explore the fundamental

nature of the instabilities which develop when air flows over a viscoelastic material
lying on top of a viscous sublayer. The motivation behind this work is to study mucus
clearance in the lung, although the model could also be used to study other systems,
such as the removal of ice on airplane wings during flight. In the case of ice, the
transverse elastic wave speed is approximately 105 times larger than that of mucus
(Ashby & Jones 1980), so that the dominant instability over all realistic wavenumbers
is the flutter instability.

In order to understand the instability regimes, we have calculated the activation
energy of the solid, so that we can classify the waves and hence interpret the wave
behaviour when fluid and material damping is added to the system. This has involved
calculating the strain and kinetic energies of the elastic solid, as well the work done
on the air flow and viscous sublayer by the solid. We have seen that the presence
of the serous layer can give rise to long-wavelength instabilities, which are class A
waves, so that they grow with viscous damping. The presence of the viscous sublayer
has little or no effect on shorter waves where the instability is predominantly a flutter
instability set up between the air flow and the solid medium.

The long-wave instabilities are due to the Bernoulli forcing of the air flow, and
would arise in systems where there is no mucus layer present. For shorter waves,
when the flow speed is less than [2(1−Gλ)/R]1/2, and there is no surface tension, the
system can become stabilized; in this regime the solid supplies an elastic restoring
force to the system, in much the same way that surface tension can stabilize fluids
at shorter wavelengths. When Û > [2(1 − Gλ)/R]1/2, the system recovers the flutter
instability for shorter waves.

We have included the effect of surface tension at the air/mucus interface, not a
feature of previous theories. The new dimensionless surface tension parameter, κ,
is the ratio of surface tension to elastic shear forces so κ � 1 implies a system
dominated by surface tension and κ� 1 implies a system dominated by the stiffness
of the mucus. In general, surface tension stiffens the entire system, but its value can
reverse the effect of mucus thickness on critical velocities. Surface tension also acts
to stabilize flutter instabilities at larger wavenumbers, so that the instability of the
system at onset is entirely due to the presence of the serous layer. Our results show
that the air flow speed required to precipitate instabilities is much lower than that
required in systems where there is no serous layer. This agrees qualitatively with the
observations made in the experiments of Basser et al. (1989) at onset, in the small
deformation regime.

A caveat to these theories and experiments is that during a cough, air flow velocities
can be very large, as mentioned earlier. The instabilities discussed in the present work
and that of Basser et al. (1989) occur at much smaller air velocities. Therefore,
neither mechanism may be directly responsible for mucus clearance during a cough,
since other effects may supersede: airway wall movement, transient inertial effects,
turbulent bursts. The wall motion, for example, may be a partial collapse of the
airway followed by wall flutter as studied in Grotberg & Shee (1985), Grotberg
& Reiss (1984), Grotberg & Gavriely (1989), Gavriely et al. (1989) and LaRose &
Grotberg (1997). Additionally, an important consideration for the role of the bilayer
is not only how the serous fluid may assist in clearance of the mucus, but also how
both layers may protect the underlying airway epithelial cells from excessive fluid
shear forces.
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